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Abstract— Route guidance is an essential component of 

intelligent transportation systems and a necessary 

ingredient to any automatic piloting system. Looking at 

the literature on Route Guidance, one can quickly see a 

chasm in how the problem is seen in the academic 

community and how it is seen in the automotive, 

industrial world. There seems to be different levels of 

interest in this problem and divergent assessment of its 

level of difficulty and the nature of challenges that are 

inhibiting its becoming a reality. In this paper, we 

examine the literature in the field, identify the 

prerequisites for a viable implementation of Route 

Guidance, and examine the state of development of each 

of these pre-requisites.   

I. INTRODUCTION 

OUTE guidance systems refer to all driver decision aids 

used before a trip to select a route, a travel starting time, 

and possibly decide whether or not to undertake the trip, 

as well as those used during the trip to adjust the route as 

needed in light of unforeseen events. Route guidance is a 

sub-component of Driver Assistance Systems, which is in 

turn a component of Intelligent Transportation Systems (ITS) 

as defined by the U.S. Department of Transportation [1] [2]. 

ITS is a technology aimed at improving traffic safety and 

mobility and enhancing productivity through a broad range 

of advanced information and communications technologies.  

DOT identifies Route guidance systems as a major 

component of ITS.   In addition to Route Guidance, which is 

concerned with decisions at intersection points (as well as 

entry and exit points on a highway), Driver assistance 

Systems encompass a variety of other smaller grain decision 

aids such as lane keeping, Object Detection, and Intelligent 

Speed Control. Other capabilities within ITS, at the same 

level as Driver Assistance Systems include Arterial, 

Freeway, and Transit Management Systems, Incident 

Management Systems, and Electronic Payment Systems, to 

mention just a few. 

 

The technologies developed under ITS have the dual goal 

of enhancing existing modes of transportation as well as 
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paving the road for future modes, such as fully automated 

driving. Route guidance is a key ingredient to automatic 

driving. In addition, it has been shown through some studies 

to have a potentially dramatic impact on safety [4], mobility 

[5], capacity throughput [4], and customer satisfaction [6]. 

Yet, many questions remain about the mechanics and the 

effectiveness of this guidance. For example, a 2001 

simulation-based study for drivers in Toronto, Canada, 

showed that Route Guidance improved travel time and 

capacity throughput starting from a market penetration of 

15%, but also an increase in accident rates when market 

penetration exceeded 60% [7].  

 

Because of its potential, and in response to advances in 

technology, there has been a flurry of interest in research and 

development in ITS. The developments in wireless 

communications and their increasing presence onboard 

vehicles, as well as raised expectations from drivers in terms 

of the variety and the quality of services that they expect 

onboard their vehicles pave the way for further 

developments. Whereas the level of penetration of the 

technology seems to be largely economically driven (more 

predominant in wealthier countries) the level of expectation 

and the openness towards these services seem to be in part 

culturally driven, with significant differences between Asia, 

Europe, and North America (e.g., see [29] for a comparative 

study of US, France, Germany, and Japan).  

 

At a first glance, Route Guidance may seem to be one of 

the easiest of ITS technologies, and thus, one would expect it 

to have become a standard feature available on all vehicles 

and demanded by all drivers. Yet, this is far from being the 

case. This paper is an attempt to understand the challenges to 

a full materialization of this technology. The impetus behind 

this investigation is the observed divergence between the 

way the Route Guidance Problem seems to be portrayed in 

“academic” circles, basically as a solved problem, and the 

way in which it is seen in industry, as a problem for which 

existing published solutions either do not scale up, make 

unrealistic assumptions or lack the cost/benefit structure 

necessary for success as a commercial product.   

 

This paper is organized as follows: In section II, we 

discuss the motivation and need for route guidance and 

provide a classification of route guidance approaches. In 

sections III, IV and V we discuss respectively the 

computational, human factor and economic challenges to a 

widespread deployment of Route Guidance. Section VI 

presents conclusions and future directions. 
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II.  CLASSIFICATION OF ROUTE GUIDANCE APPROACHES 

Route guidance systems are a type of Traveler 

Information System (TIS) that provide traffic information 

and travel recommendations to drivers to help them make 

better travel decisions.  By influencing driver decisions, 

these systems affect transportation demand.  A closely 

related advanced technology is Traffic Management Systems 

(TMS) which control and impose constraints on traffic.  

These systems control transportation supply.  The 

technologies differ in the sense that drivers are obligated to 

comply with TMS processes and rules but are not required to 

accept or follow TIS/route guidance recommendations.  

However, the two systems are similar in that they use some 

of the same mechanisms and processes to perform 

overlapping functions such as determining network traffic 

flow and congestion and identifying optimum routes.   

A. Descriptive and Prescriptive Guidance 

Route guidance can be divided into two major categories 

of guidance: Descriptive Guidance which provides 

information on traffic and road conditions with no routing 

advice, and Prescriptive Guidance which provides routing 

advice but no information on traffic network conditions.  In 

some implementations, descriptive and prescriptive system 

elements are combined.  A variable message sign that 

provides drivers with current estimates of driving time to an 

upcoming highway intersection is an example descriptive 

guidance while an online mapping and driving direction 

system is an example of prescriptive guidance.  Guidance 

can also be categorized by when the guidance is provided: 

either pre-trip as with online driving directions or en route as 

with variable traffic signs. 

B. Static and Dynamic Guidance 

A key distinction among route guidance systems involves 

the type of data used.  Static guidance systems are based on 

historical data that may reflect traffic patterns over some 

time period of interest, but does not reflect current 

conditions in the network.  Dynamic guidance systems use 

real-time data to develop guidance based on current 

conditions in the network that drivers are likely to experience 

when following guidance.  Dynamic guidance can be further 

subdivided into two major types: discrete and continuous.  In 

discrete dynamic networks time is modeled as a set of 

integers (such that each travel time interval is associated with 

a fixed travel cost).  In continuous networks time is treated 

as real numbers.  A key challenge in dynamic route guidance 

is the difficulty and cost of obtaining accurate estimates of 

traffic in the network; this is especially the case when the 

timeframe we are interested in route guidance is in the future 

(such guidance is referred to as anticipatory route guidance). 

As a result, any traffic estimate is bound to be an 

approximation. The tradeoff then is in obtaining an 

approximation in a cost-effective manner. 

 

There are two complementary approaches to addressing 

this inherent uncertainty related to traffic: 

 Reactive Systems: The uncertainty related to the future 

is overcome by shortening the time horizon of the route 

guidance.  Data is monitored and collected in real-time 

about upcoming segments on a route and used to modify 

previous predictions. Reactive behavior tends to lead 

towards a greedy approach whereby decisions make 

local optimizations based on short-range time frames. 

 Predictive Models: Models of various levels of 

complexity are created using historical data collected 

over long periods of time and further complemented 

with real time data. The complexity and level of 

accuracy of these models varies with the nature and 

grain size of the data they use, among other things. 

 

The data used in the reactive approach is collected either 

from road-side traffic monitoring equipment or from mobile 

vehicular networks (VANETS) in which vehicles exchange 

recent traffic experience with other vehicles in their 

transmission range.  These decentralized approaches are able 

to react to unplanned events.  Farver [13] observes that 

reactive systems can be useful when predictive systems are 

unavailable or provide poor results.  The predictive approach 

usually involves large centralized databases of historical 

traffic data about the entire traffic network.  Bottom [15,16] 

has found that predictive, centralized systems provide high 

quality guidance when accurate data is used.  However, when 

these systems make their predictions on historical data alone, 

they are unable to react to unplanned events such as 

congestion caused by traffic accidents or emergency road 

repairs.  

 

The reactive and the predictive approaches are not 

exclusive of each other. Reactive systems can be made to 

react to events relevant to future decision points (rather than 

to the immediate decisions alone), and predictive systems 

can use dynamic, real-time data in addition to historical data. 

Such approaches are qualified as hybrid; they have been 

shown to achieve the advantages of both types of systems 

[13]; they provide globally optimal routes using predictive 

traffic models and maintain the optimality of these routes by 

reacting quickly to unforeseen events. When hybrid systems 

use real-time data concerning future decision points and 

adjust their recommendations based on what they anticipate 

the traffic to be, they are called anticipatory. 

C. Consistent Route Guidance and the CARG Problem 

Any method for generating anticipatory route guidance 

must address the following important problem: anticipatory 

guidance involves predictions of future conditions, but those 

conditions will themselves be affected by driver’s reactions 

to the guidance received.  There is a risk that the number of 

drivers changing their behavior in response to predicted 

guidance information is so high that the predicted traffic 

conditions become invalid. Critten [19] calls this 

phenomenon overreaction.  Route recommendations that 

account for this phenomenon and incorporate it in their 

predictions are said to be consistent.   Guidance is said to be 

consistent when any forecast on which the guidance is based 
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is the same as the outcome that results when drivers follow 

the guidance. 

D. System Optimal and User Optimal Guidance 

Route guidance can be provided to selected drivers that 

are equipped to receive it, or it can be made available to all 

drivers in the traffic network.   This distinction leads to a 

further classification of route guidance in terms of interest 

served.   

 System Optimal guidance aims at improving travel 

conditions for the entire network.  In this scenario, some 

drivers might be routed to suboptimal routes in order to 

balance and improve overall network flow.  System 

optimal approaches are usually categorized as traffic 

management systems rather than guidance systems.  

While users might not be inclined to accept suboptimal 

route guidance, they are obliged to follow such routing 

if provided by traffic management system because 

compliance is compulsory. 

 User Optimal guidance aims at optimizing the route of 

individual drivers (i.e. those equipped and enabled to 

receive it) without concern for the network as a whole.   

 

In most cases, system and user optimal guidance are 

viewed as competing philosophies and are implemented 

independently of each other.  However, within the 

framework of the Prometheus Program, the European 

automotive industry has initiated an effort to combine 

“individual” and “collective” route guidance in a single 

product referred to as Dual Mode Route Guidance [23]. 

 

At low levels of market penetration (i.e. when only a 

small percentage of vehicles in the traffic network are 

equipped to receive guidance), user-optimal guidance will 

have little or no impact on the system-optimized guidance. 

On the other hand, as the level of penetration increases, 

coordination becomes critical.   

III.  COMPUTATIONAL CHALLENGES  

In this section we review the spectrum of solutions 

published to the route guidance problem in order to better 

understand the claim that these solutions are based on 

unrealistic assumptions, and that they do not scale up. We 

examine these solutions by starting from the most simplified 

view (Route Guidance as a shortest path problem), to the 

most comprehensive and complex (anticipatory route 

guidance). For each of these solutions, we assess 

 Their assumptions, 

 Their scalability, 

 Their usefulness. 

There are many characteristics of a trip that can be 

considered in defining an optimum route.  Among these are: 

shortest distance, shortest travel time, minimum number of 

traffic signals and the route with the least amount of freeway 

driving.  Finding the optimal path when the parameter being 

optimized does not change (e.g. distance, nature of the road) 

is relatively easy. We thus focus on the more common, and 

more challenging case of optimizing travel time.    

A. Optimal Route Problem 

Traditionally, the problem of finding the optimal path is 

modeled as a shortest path on a directed graph as follows: 

Given a labeled directed graph G defined as follows: 

V: {v1, v2 …vn} the set of vertices represents the set of 

decision points on the map of interest. These decision 

points can be intersections or highway entry and exit 

points. 

E: the set of edges is a set of pairs (vi, vj) representing a 

segment of the road between two adjacent decision 

points. The graph is directed to account for one-way 

streets and divided roads/freeways. 

C: the cost function is a function ER
+ 

associating a 

cost with each edge. 

Given two distinguished vertices a source s and a destination 

d, we define the optimal route p(s,d) as the path in G from s 

to v with the minimal cost. 

 

When G is connected and the cost of interest, C, is the 

distance or some other static parameter such as the number 

of traffic signals or highway distance, then the Optimal 

Route Problem can be formulated and solved efficiently to 

find the optimal route using one of the well-established 

shortest path algorithms.   

 

Applications of this type, such as Mapquest, are typically 

accessed by online users to generate maps and driving 

directions on the fly.  These applications are widely used, 

with Mapquest [9] alone providing more than 10 million sets 

of driving instructions and maps each day.  Despite these 

large transaction volumes, system response time is very low. 

 

An important factor in assessing the effectiveness of a 

route guidance algorithm is its scalability or growth rate.  

This is particularly important in route guidance where traffic 

networks can involve very large numbers of nodes and links, 

and guidance algorithms are often run repeatedly in real time 

for guidance updates during a trip.  Mapquest employs the 

Dijkstra [8] algorithm which computes a one-to-all (i.e. from 

a single vertex to all other vertices) shortest path at a single 

instant in time.  Mapquest uses Dijkstra in a bi-directional 

search, working backward from both the starting and ending 

points at the same time. Dijkstra is in O(|V|
2
) where |V| is the 

number of vertices in the network.  However, for sparse 

graphs (i.e. with many fewer than |V|
2
 edges), Dijkstra can be 

implemented to run in O(|E| log(|V|)), where |E| is the number 

of edges.  A typical urban transportation network, such as the 

city of Boston [11] with 25,000 links and 7,000 nodes, 

constitutes a sparse graph. For such a network, |V|
2 

would be 

4.9 10
7
 whereas |E| log(|V|) is “only” 4.2 10

5
.  To further 

reduce the computational cost, hierarchical maps are often 

employed.  These maps are constructed with coarse 

granularity, grouping large numbers of vertices into a few 

regions. Since street level resolution is only addressed near 

the origin and destination, the task of creating guidance 

greatly simplified, and scaling is improved.   
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Because mapping and driving direction systems employ 

static cartography and map databases, they are unable to 

provide real time information on the status of the traffic 

network.  These systems are able to provide estimates of 

driving time, however this information is usually based on 

posted speed limits and does not take into account the status 

of the traffic network as time varies.  Because they are 

unable to reflect time-dependent changes in the network, 

these systems are used primarily for pre-trip planning and 

not within-trip guidance.    

B. Traffic-Dependent Optimal Route Problem 

For many parameters of interest, such as travel time, a 

travel cost function cannot be formulated simply as a 

function C: ER
+
. Instead, travel time on a given edge is a 

function, not of the edge alone, but also on the amount of 

traffic as measured by the number of vehicles on that edge, 

in other words, the cost function is  C: ExT  R
+ 

 

The traffic-dependent optimal route problem is no more 

complex than the original optimal route problem, provided T 

is available and accurate, and congestion in the network does 

not prevent the required additional routing. Thus, the traffic-

dependent problem is defined as: 

Given a labeled directed graph G defined as follows: 

V: {v1, v2 …vn} the set of vertices, and 

E: the set of edges (vi, vj) are defined as in problem 1 

T: the amount of traffic on each of the segments is a 

function ER
+
 

C: the cost function is function ExTR
+ 

associating a 

cost with each edge in a continuous dynamic network 

(or ExTN
+
 in a discrete dynamic network). 

Given two distinguished vertices: a source s and a 

destination d, we define the optimal route p(s,d) as the path 

in G from s to d with the minimal cost.  p(s,d) constitutes  

guidance instructions for traveling from s to d.  

 

While a fastest path solution based on dynamic data is a 

significant improvement to a static solution, it has little 

practical value if the resulting route guidance is restricted to 

the present time only. Rather than implement such narrow 

solutions, researchers moved to the following more general 

problem of using current knowledge of the traffic network to 

project guidance for future time periods. 

C. Predictive Route Guidance 

The traffic dependent optimal route problem and its 

solution assume that the traffic conditions are known ahead 

of time. In practice, what is available is: 

 An estimate of traffic at the time of interest based 

on historical data, and 

 The current state of the traffic. 

To the extent that the current state of the traffic is consistent 

with historical patterns, the solution presented above is 

bound to also be accurate. But, in those cases where non-

routine traffic events occur, the current event of the traffic, 

when projected on the future would give a more accurate 

solution than the traffic-dependent presented above.  

Predictive route guidance differs from traffic-dependent 

guidance in the definition and computation of the traffic 

component.  The function T that associates traffic to route 

segments over time needs to be estimated based on historical 

data and on real time reports on traffic. 

 

Given a labeled directed graph G defined as follows: 

V: {v1, v2 …vn} the set of vertices, and 

E: the set of edges (vi, vj) are defined as in problem 1 

Th: the amount of traffic on each of the segments is a 

function ER
+
 based on historical data. 

Tp: the amount of traffic on each of the segments 

measured in the present. 

T: the amount of traffic on each of the segments at the 

time it will be traversed. T is the predicted time 

computed from the combination of Th and Tp . 

C: the cost function is function ExTR
+ 

associating a 

cost with each edge in a continuous dynamic network 

(or ExTN
+
 in a discrete dynamic network). 

Given two distinguished vertices: a source s and a 

destination d, we define the optimal route p(s,d) as the path 

in G from s to d with the minimal cost.  P(s,d) constitutes  

guidance instructions for traveling from s to d.  

The predictive problem differs from the dynamic 

problem only by the way in which traffic is computed. Thus 

we only need a solution to the computation of T from Th and 

Tp. 

Chabini [11] has proposed an all-to-one (i.e. shortest 

paths from all nodes to one destination node for all departure 

times) discrete dynamic shortest path algorithm, named the 

Decreasing Order of Time (DOT) algorithm.   Chabini [11] 

has tested DOT and claims it to be the most efficient 

algorithm solution possible. 

 

In order to discuss the DOT formulation, we further 

define G as follows: 

C: the set of link-dependent travel times where 

C = {ci,j(t)|(i,j)   E}, and 

          ci,j(t) is a discrete and time-dependent function that 

has integer-value domain and range and takes a static value 

after a finite number of time intervals M. 

If we define πi(t) as the fastest travel time to destination d 

from departing node i at time t, the minimum travel times are 

defined as:  

     min v(j)E(v(i))ci,j(t) + πi(t + ci,j(t)) ; i j 

πi(t) =  

               0           ; i = j 

 

The DOT algorithm as presented by Chabini[11] runs in 

Θ (SSP + |V|*I + |E|*I) where I the number of time intervals.  

SSP is the optimal running time of a valid static shortest 

paths procedure.  If we assume the procedure is Dijkstra, 

DOT is in Θ (|E| log(|V|) + |V|*I + |E|*I).  As with the 

Dijkstra algorithm, the DOT algorithm is also quasi-linear. 

This, combined with the use of hierarchical maps, makes the 

algorithm’s performance not an issue for scalability.  

Furthermore, Chabini [11] compares DOT performance to 

three other established label-correcting, all-to-one fastest 
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path algorithms.  Those tests suggest that DOT significantly 

outperforms all other algorithms for a range of |V|, |E| and I 

values. 

 

Although DOT is one of the more recently developed 

(1997) dynamic shortest path algorithms, it is more than 10 

years old.  Neither DOT nor any of the other well known 

dynamic shortest path algorithms, such as A*[24] are known 

to have been deployed for use in automotive transportation 

networks and have been tested primarily in simulation.   

D. Consistent Anticipatory Route Guidance (CARG) 

Problem 

Based on the above discussion, given a source s, a 

destination d, and a time t, we can find an optimum path p1 

in graph G. Yet, if G were to represent a real-world traffic 

network involving thousands of drivers per day with the 

same source and destination, all of whom were routed to p1 

instead of other options, congestion will occur on p1, making 

it far from being the optimal path, and leaving alternate 

routes underutilized.  This problem highlights one of the 

major challenges of route guidance: ensuring that guidance, 

when followed, actually produces travel improvements for 

vehicles that receive it.  

 

Traffic congestion can be defined as the condition of a 

traffic network when the traffic demand exceeds the capacity 

of the network.  The Transportation Research Board’s 

Highway Capacity Manual [10] identifies traffic congestion 

in terms of six Levels Of Service (LOS) ranging from level 

A, the best travel conditions (i.e. free flow) in which 

individual vehicles are virtually unaffected by other vehicles 

in the traffic flow, to level F, the worst conditions, 

characterized by stop and go traffic and poor travel time.  

The volume of traffic on a road segment at LOS A or B 

could be doubled or tripled with minimal affect on speed and 

travel time.  However, at LOS E or F, the addition of just a 

few vehicles could cause a traffic jam. Overall, traffic 

congestion is nonlinear and the application of route guidance 

can have varying effects based upon the state (i.e. LOS) of 

the road segment to which the guidance is applied.  A road 

segment identified as an optimal route can absorb additional 

traffic routed to it if it has a low LOS but will experience 

congestion if its LOS is high. 

 

Any method for generating anticipatory route guidance 

must address the following important issue: anticipatory 

guidance involves predictions of future conditions, but those 

conditions will themselves be affected by driver’s reactions 

to the guidance received. Clearly, the potential for 

overreaction becomes greater at high LOS. In most cases, a 

road segment with high LOS is not likely to be part of the 

optimal path.  However, at high penetration levels, a segment 

selected as part of the optimal path, because of its low LOS, 

may turn into a high LOS, and thus become sub-optimal.  At 

high penetration and LOS levels, it is difficult for guidance 

to produce positive results.  In such cases, the network is 

described as being in a state of “user equilibrium” where no 

driver is able to change to a better path.  

 

Bottom notes that randomness is a significant component 

of congestion.  He quotes Lindley’s [17] estimate that 

roughly 60% of the congestion delays on urban freeways in 

the U.S. are non-recurrent; instead, they are caused by 

instances of “random” events such as accidents and vehicle 

breakdowns. 

 

For the above reasons, the concept of “consistent” route 

guidance has emerged as a relevant issue in route guidance.   

Guidance is considered to be consistent when any forecast on 

which it is based is the same as the outcome that results when 

drivers follow the guidance.  But if it is true that randomness 

is an important characteristic of congestion, then one must 

question the meaning of consistency in a stochastic 

environment.  Bottom defines consistency to mean not that 

input and output are numerically the same, but rather that 

they are drawn from stochastically equivalent processes. The 

concept of consistency addresses the concern that route 

guidance can be rendered invalid by the very act of drivers 

following the guidance In order to address the issue of 

consistency, we can no longer focus on a single driver and 

single pair (source, destination).  Instead, we need to address 

the problem globally, for a set of drivers and a set of routes.  

Thus, given a set of (s,d) pairs, we generate, not a single 

optimal path, but a set of optimal paths.  The following will 

be part of the Consistent Anticipatory Route Guidance 

(CARG) Problem. 

 

Given a labeled directed graph G, the CARG problem is 

defined as follows: 

V: {v1, v2 …vn} the set of vertices, and 

E: the set of edges (vi, vj) are defined as in problem 1 & 2 

T: the time varying amount of traffic on each of the 

segments is a function ER
+ 

C: the cost function is function ExTR
+ 

associating a 

cost with each edge in a continuous dynamic network (or 

ExTN
+
 in a discrete dynamic network) 

Because of the possibility of overreaction, the generation 

of an optimal path, p, is only a first step in generating the 

guidance.  Once path p is generated, multiple variations on p 

will be generated to spread the drivers.  Thus, we distinguish 

between P, the set of optimal paths, and M the set of 

instructions generated. 

P: the set of optimum path flows between <specific/all> 

<s,d> pairs 

M: guidance instructions for travel between all <s,d> 

pairs. 

Bottom [15] and a team of MIT researchers have 

developed a guidance system called DynaMIT [21] 

(Dynamic traffic assignment for the Management of 

Information to Travelers) based on the above described 

framework.   DynaMIT incorporates origin-destination 

demand estimation and prediction models, a traffic 

simulation model, and behavioral models that anticipate 

drivers’ behavior. Data from these discrete dynamic models 
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are fed into an algorithm that integrates the information to 

predict network conditions and provide guidance to drivers 

in an iterative fashion.  Starting with a computer generated 

estimate of P, DynaMIT iteratively employs the following 

functions: 

S: a network loading function that maps the altered path 

flows into a new set of network conditions PT 

GD: A guidance function that maps current network 

conditions into a set of instructions for travel between all 

<s,d> pairs TM 

D: A path splitting function that maps Guidance messages 

into corresponding path flows MP 

Optimum guidance as the set of paths P in G with 

minimal total cost C such that such that the composite 

mapping: S o G o D: PP  

After each iteration, the input guidance traversal times 

are compared with the output traversal times to determine 

consistency. DynaMIT repeats the process until consistency 

is satisfactory or the allotted number of iterations has been 

performed.   

   

Bottom [15] concludes that the guidance is consistent if 

the forecast path flows are the same as the flows initially 

assumed.  An iterative algorithm called the Time Smoothing 

Algorithm was developed for the solution of the above 

problem.  This algorithm is somewhat based on the Method 

of Successive Averages (MSA), which is frequently used in 

stochastic user-equilibrium assignment algorithms. 

 

At this time, we do not have enough information on 

DynaMIT to perform a complexity analysis. However, it is 

clear that the formulation of the algorithm involves a high 

number of variables.  The size of P is the number of network 

paths time the number of prediction times intervals, the size 

of T is the number of network links times the number of time 

intervals while M depends on the model implementation.   

Prior to implementation, DynaMIT was tested on a small 

network that simulated the Boston Central Artery Network 

on a weekday morning.  In the test, simulation parameters 

such as guidance recomputation interval and the number of 

algorithm iterations were evaluated at various values.  The 

researchers provided a qualitative report on the effects of 

parameter tuning. 

 

The problem description described in this section applies 

to both user optimal and system optimal guidance.  If the 

definition of P involves specific <s,d> pairs we are 

addressing user optimal guidance. However, if P refers to all 

<s,p> pairs then the problem addresses system optimal 

guidance.  In either case, the behavior of all traffic must be 

modeled, including unguided traffic in user optimal systems. 

 

As mentioned above, at present, there are no known 

major implementations of consistent anticipatory route 

guidance in user-optimal settings.  However, several CARG 

traffic management (i.e. system optimal) systems have been 

deployed for field testing.  MIT has implemented DynaMIT 

[25] as a traffic management system in the South Park area 

of Los Angeles in September 2005. This approximately one-

square-mile region just south of downtown is plagued with 

heavy traffic year round. Data from its origin-destination, 

demand estimation and prediction models, its traffic 

simulation model and its driver behavior model are fed into 

an algorithm that integrates the information to predict 

conditions 30 minutes out and provide alternate routes to 

drivers. The MIT team claims that DynaMIT does all this in 

less than five minutes operating on a desktop computer.  

 

No detailed information is yet available regarding 

DynaMIT performance and run time complexity in the Los 

Angeles implementation. Such data is needed to determine 

its effectiveness and scalability in providing anticipatory, 

consistent guidance under congested traffic conditions.  

However, the installation of DynaMIT in a very busy traffic 

network indicates that consistent, anticipatory route guidance 

is coming of age (at least in a traffic management 

environment) and is moving from simulation to the real 

world where a body of data can be accumulated and 

evaluated.   

E. Summary 

Great strides have been made in the implementation of 

static, mapping and driving direction systems.  Despite their 

limitations, these applications have enjoyed great 

commercial success by efficiently performing a narrowly 

defined but very important function. However, despite the 

considerable amount of route guidance research that has 

been performed, implementations of such systems for public 

use are still sparse.  MIT professor Moshe Ben-Akiva [22] 

blames this on a lack of focus on coordinated and well-

funded intelligent traffic systems.  Some in the automobile 

and transportation industry are unaware level of research that 

has been performed.  Although there is great interest in the 

topic there is concern that the current state of the art in route 

guidance does not yet justify its inclusion in the design of 

commercial vehicles. 

 

In discussing the competing philosophies underlying 

“individual” (user-optimal) and “collective” (system optimal) 

route guidance, Muffat [23] charges that different research 

projects are “developing separately and competing, thus 

creating confusion and preventing car companies from really 

choosing one system they could recommend to their 

customers or postponing investment or support from 

authorities in order to implement a system.”  In his study on 

vehicle navigation and route guidance technologies, Ygnace 

[28] observes that it is not unusual for some technical 

inventions (e.g. the washing machine, the elevator and the 

camera) to take half a century or longer before emerging into 

the market with a large scale diffusion.  He opines that the 

field of vehicle navigation may be falling into the “long-term 

process” considering that early research in the subject dates 

back to the late 1950’s. 
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IV.  HUMAN FACTOR CHALLENGES  

The level of acceptance and perceived value of route 

guidance by the driving public are a major determinant in the 

degree to which route guidance technologies are developed 

and deployed for use in traffic networks.  This is particularly 

true in user optimal systems, where drivers have the option 

of equipping their vehicles to use guidance and/or 

subscribing to some type of guidance service.  Drivers that 

do not perceive value in guidance and do not plan to use it 

will be unlikely to pay additional costs for guidance 

functionality when they purchase a vehicle or pay for on-

going guidance service access.    

 

Watling [14] suggests that unless in-vehicle systems 

become compulsory, no more than 20 – 30 % of the driver 

population is likely use such systems.  He further suggests, 

that in order for route guidance to achieve wide acceptance, 

it should be provided as a public service or as a private 

operation funded by user’s license fees.  Finally, he observes 

that drivers are unlikely to invest in route guidance 

equipment unless they believe that it will improve the 

efficiency of their own journeys, and that governmental units 

will invest in route guidance only if it benefits the entire 

driving public.In a 2007 study of driver response to variable 

message signs (VMS), Erke [26] found that drivers 

welcomed information about incidents and suggestions for 

alternative routes and determined that 20% of vehicles 

changed their route according to the VMS recommendation.  

In an earlier study (known as the Chicago Study) of driver 

reaction to the Advanced Driver and Vehicle Advisory 

Navigation Concept (ADVANCE) in-vehicle dynamic route 

guidance system, Schofer [27] found that drivers perceived 

routes provided by ADVANCE to be not particularly good 

and inferior to their own routes. However, these drivers 

exhibited a high level of interest in real-time traffic 

information, particularly information about non-recurring 

congestion.  They appeared to be very interested in blending 

such real-time information with their own knowledge to plan 

their own routes.  

V. ECONOMIC CHALLENGES 

A key factor in the degree to which route guidance 

technology continues to grow in importance as an ITS 

component is the affordability of the technology and the 

willingness of users to pay to acquire and use it.  In the case 

of system optional implementations, decisions to implement 

will usually be made by a governmental unit.  Such decisions 

will often be prompted by the need to extend the usability of 

a traffic network that is nearing capacity.  If it is believed 

that the technology will result in more efficient traffic 

routing and extended traffic network life, route guidance 

technology becomes an attractive option since it is likely to 

be cheaper than building new/additional roadways. 

 

In the case of user optimal systems, where guidance 

acceptance is optional, decisions to invest in technology 

development will be made by auto manufacturers and OEMs 

who believe that customers will purchase and use the 

products thus developed.  In this regard, field trials such as 

the Chicago project or MIT’s Los Angeles project are very 

important in providing real-world data as to actual costs for 

system implementation. The very comprehensive Chicago 

report indicated that potential user/customers were willing to 

pay significant prices for guidance features (such as real time 

traffic information) they deemed important.  While there will 

be infrastructure costs associated with the implementation of 

both system and user optimal guidance, overall there will be 

likely be higher costs associated with the latter due to 

equipment and software required in vehicles.  This fact, 

together with the need for governmental units to find 

additional roadway capacity may explain why traffic 

management systems are being developed and implemented 

more quickly than route guidance systems.  

VI. CONCLUSIONS AND FUTURE DIRECTIONS/NEEDS 

It is apparent that ITS researchers have developed a strong 

analytical understanding of route guidance and its associated 

problems.  However it is also clear that much work remains 

to be done in the development and testing of algorithms to 

implement the concepts that have been learned, particularly 

in the areas of anticipatory guidance involving time-

dependent data.  Most of the testing to date has been done in 

simulation, and then often with very small traffic networks.  

And many of the navigational aids that are currently 

available to the public involve static databases.  Because of 

this situation, it is often the case that important, emerging 

technologies, such as autonomous driving vehicles, intended 

to work in conjunction with anticipatory route guidance, are 

implemented with the most rudimentary route guidance 

functionality.  For example, in November 2007, the Defense 

Advanced Research Projects Agency (DARPA) conducted 

its annual driverless car competition in a mock urban 

environment for the first time.  Although all competing 

vehicles demonstrated strong capabilities in most automotive 

robotic systems, and showed the ability to move in traffic 

and negotiate busy intersections, there was no requirement 

for the identification and use of efficient routes.  When 

autonomous vehicles are deployed for public use, they must 

be able to produce guidance that drivers perceive to be as 

good or better than the routes they would choose on their 

own.  

 

This situation points out the need for more aggressive 

pursuit of practical solutions to basic anticipatory route 

guidance problems that can be implemented within 

reasonably short time frames and tested through use in the 

public domain.  It also suggests a need to more efficiently 

utilize research resources.   For example, there is great 

interest and considerable published research devoted to 

finding consistent solutions to the CARG problem.  
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However, considering the time that may be required for a 

significant number of drivers to become equipped to receive 

guidance, and the low upper limit of such drivers as 

predicted by researchers such as Watling [14], there could be 

many years before any serious consequences of the CARG 

problem are felt in most traffic networks.  And considering 

the high computational overhead associated with some forms 

of consistent guidance (e.g. fixed point formulations), it may 

be beneficial, at this time, to channel more research energy 

into basic anticipatory guidance solutions.  This will make 

needed guidance technology more quickly available to the 

public and create a knowledge base that will expedite 

solutions to future problems.  
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