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ABSTRACT 

Traditionally, web searching has focused primarily on web pages.  

Mechanisms for finding, indexing, and ranking these pages have 

involved linking among pages.  However, the overwhelming 

majority of web information is not stored in web pages. This 

content, known as the Deep Web, exists in such forms as images 

and databases (including sensor network data).  Because Deep 

Web resources are not "connected" or self describing in the same 

way as are surface resources, they cannot be searched and 

accessed using traditional surface web search methods.  In this 

paper we focus on a particular type of Deep Web resource, the 

web-enabled Sensor Network, or Sensor Web (SW).  We discuss 

the challenges in locating and identifying the contents of Sensor 

Webs and we discuss metrics needed to assess the relevance 

(actual and potential) and authority of SWs, individually and in 

groups, with respect to an information request or query.  We 

define and discuss a 3 dimensional vector of metrics (topicality, 

coverage and timing) that quantifies the degree to which a SW 

addresses the  what, where, and when (also how often) aspects  of 

a query.  We use semantic distance to measure the topicality 

relevance of a SW to a set of query terms.  We use geometric 

overlap metrics to measure coverage relevance; we use time, time 

range and frequency of observation metrics to measure  timing 

relevance. To quantify the authority of a SW, we use a variation 

of topic-sensitive PageRank to assess the importance of the entity 

responsible for the creation and maintenance of the SW resource. 

Such entities are usually identifiable via the surface web.  We 

present examples of the use of these metrics and describe a 

project to further investigate their use in facilitating effective deep 

web searching and the development of a search engine for Sensor 

Web resources. We validate our approach in a two step process 

that will involve: 1) Creation of a computer model of the 

proposed metrics and ranking methodology, and 2) Testing of the 

model with a predefined set of queries and SW resources by a 

panel of test users who will assess and evaluate the rankings of 

the SW resources returned by the model with respect to various 

queries.  Model parameters will be adjusted based on test 

feedback in order to evaluate and optimize the ranking approach. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – Relevance feedback, Retrieval models, Selection 

process 

General Terms 

Measurement, Algorithms 

Keywords 
Semantic Web, semantic distance, sensor web, relevance, 

authority 

1. INTRODUCTION 
“Searching on the Internet today can be compared to dragging a 

net across the surface of the ocean. While a great deal may be 

caught in the net, there is still a wealth of information that is deep, 

and therefore, missed. The reason is simple: Most of the Web's 

information is buried far down on dynamically generated sites, 

and standard search engines never find it.”   Michael K. Bergman 

Search engines have been developed and refined with a focus on 

locating web pages, i.e. primarily static documents. Web pages 

have many features that have been exploited by search engines to 

find them, index them, and rank them. The uniform header 

information as well as the machine readable text content is used to 

determine the nature of the information contained in these pages. 

The links across pages are used by crawlers to locate new pages 

and to assess standing of a page among its “peers.”  As useful as 

these pages and search engines are, they can be seen as just the 

surface of a very deep ocean of information. The phrase “Deep 

Web” was coined by Michael Bergman [1] to refer to the wealth 

of information that is located in repositories accessible on the 

internet, yet remain largely invisible to traditional search engines.  

In 2001, Bergman estimated the deep web content at nearly 550 

billion individual documents compared to one billion of the 

surface web.  He observed that the search engines with the largest 

number of web pages indexed at that time, such as Google or 

Northern Light, each indexed no more than 16% of the surface 

web.  By missing the deep web, Internet searchers using these 

engines were searching only 0.03% of the available information 

content of the web at the time.  A 2009 survey by He, et. al. [2] 

updates those numbers, measuring the size of the deep web in 

terms of deep-web sites, back-end web databases and query 

interfaces, where a deep-web site is a web server that provides 

information maintained in one or more back-end web databases, 

each of which is searchable through one or more HTML forms as 

its query interfaces.  He estimates there to be 307,000 deep web 

sites, 450,000 web databases (of which 348,000 are structured and 

102,000 unstructured (e.g. texts, images, audio, and video)).  He 

further estimates that the deep web has expanded 3 - 7 times in the 

4 years (2000 - 2004).  He also observes that the three search 

engines, Google, Yahoo and MSN index respectively 32%, 32% 

and 11% of the deep web.  But because there is considerable 

overlap in their coverage the overall indexing is only 37%.  Thus, 



while the deep web is not quite as hidden as it was a few years 

ago, the majority of it still cannot be accessed by current search 

methods. 

 An important web  resource that is currently not on the radar of 

search engines is the data generated by sensor networks (SNs) 

which are computer accessible networks of many spatially 

distributed devices using sensors to monitor conditions at 

different locations, such as temperature, sound, vibration, 

pressure, motion or pollutants [3].  SNs are a component of the 

structured databases component of the deep web as referenced 

above.   In recent years, SNs, particularly wireless sensor network 

(WSNs) have seen explosive growth in the number of their 

applications, and have become ubiquitous in modern society.  As 

a major growth technology, WSN R&D budgets are projected to 

rise to $1.3 billion in 2012, up from $522 million in 2007, 

according to a recent study by ON World [4].    

SNs that are web accessible are referred to as sensor webs (SWs).  

A SW can encompass current observations or archived data and 

can consist of a single SN or a set of SNs that are able to 

communicate with each other via the web (referred to in [5] as a 

"web of webs"). Within this framework, the term sensor web can 

refer to a single web-enabled sensor network or to the collection 

of all sensor webs.  Because they are currently not accessible by 

search engines, SWs are a part of the deep web and can be 

considered  a subset of the databases category since, like 

databases, they generally are accessed only by query.   

 The rapid growth in the deployment of sensor networks, coupled 

with the lack of standard practices and protocols for their use has 

resulted in a lack of communication, integration and 

interoperability among sensor networks.  The Open Geospatial 

Consortium (OGC; www.opengeospatial.org), an international 

consortium of companies, government agencies and universities, 

was formed in 1994 to address this situation.  Similar to the 

manner in which HTML and HTTP standards enabled the 

exchange of  information on the Web, the OGC's  Sensor Web 

Enablement (SWE) initiative is focused on developing standards 

to enable the discovery, exchange, and processing of sensor 

observations, as well as the tasking of sensor systems [6].  OGC 

has  promoted sensor web enablement through the establishment 

of several encodings [7] for describing sensors and sensor 

observations, and through several standard web service interface 

definitions for the discovery and tasking of sensor networks.   

The World Wide Web consortium (W3C; www.w3.org/2001/sw/) 

has also played a major role in the SWE effort by promoting 

standardization through its Semantic Web Activity.  This activity 

provides a common framework that allows data to be shared and 

reused across application, enterprise and community boundaries.  

W3C's Semantic Web is based on the Resource Description 

Framework (RDF), a W3C standard model for data interchange on 

the Web [8].  RDF extends the linking structure of the Web by 

using URIs to identify the relationship between things (usually 

referred to as a subject/predicate/object triple). 

2. CHALLENGES AND OPPORTUNITIES 

IN SEARCHING THE SENSOR WEB 
The literature on the deep web [9, 10] outlines many of the main 

challenges of locating, assessing, and ranking resources below the 

surface. The main challenges are:  1). Deep web resources are not 

inherently “connected” in the same way that surface resources are 

and thus require a different mechanism to locate them. Surface 

Web resources such as HTML pages are connected to other Web 

resources by internal URL references within a page to another 

page.  Deep Web resources have no similar connectedness. 2). 

Deep web resources are not self describing in the same way that 

surface resources are.  Unlike surface Web resources, such as 

HTML pages that contain descriptive text, narratives, charts and 

graphs that can easily be interpreted, deep web content, such as 

databases and WSNs, is usually opaque and cannot be understood 

without the benefit of a catalog, index or some other interpretation 

tool/process.  3).  In part as a result of the first two points, deep 

web resources require a different mechanism for assessing their 

relevance and authority. Because of the self describing nature of 

surface web pages and their interconnectedness through URL 

references, relevance of such pages can be quantified in terms of 

the number of occurrences and the physical location of keywords.  

Similarly, the authority of a page can be measured in terms of the 

number of times it is referred to by other web pages.  However, 

because deep Web resources are not self descriptive or linked,  

alternative methods are needed to determine relevance and 

authority that do not require an examination and analysis of the 

contents of the resource. Sensor networks share some of these 

same issues. In particular: 

Difficulty in locating.  Sensor networks are usually created to be 

self contained and independent and generally do not link to other 

networks. Generally this is addressed (at least in the short term) 

by requiring participating SWs to sign up in a registry. 

Difficulty in identifying the “contents” of the data available 

from sensor networks.  Evolving SWE standard protocols for 

describing and annotating  sensor networks such as Sensor 

Modeling Language and standard metadata encodings are helping 

to improve this situation, however as these standards are refined, 

new procedures should not place too much of a burden on the SN 

owner.  

Need for a different metric to assess the relevance of a sensor 

web to a query.   Relevance between a query and an SW is 

inversely proportional to the semantic distance between the query 

and the content of the SW. On the one hand this issue is 

challenging with SWs  because of the lack of an overhead-free 

mechanism of identifying contents, on the other hand it is made 

somewhat easier because SWs have a set of features that can be 

easily standardized: data collected, time stamps, geographic 

location, accuracy, etc. 

Need for a metric to assess the relevance of a group of sensor 

webs.  The combination of two networks may have a high 

relevance factor even though neither of the individual networks 

has high relevance. Metrics need to be developed for 

compositions of SWs. 

Need for a new metric to assess authority.   Whereas surface 

web resources use links to assess authority and trustworthiness, 

we need a different mechanism for SWs, e.g. the authority and 

trustworthiness of the owning entity combined with some 

additional factors. 

Need to distinguish between actual relevance and potential 

relevance.  A SW may not have a high relevance factor as is, but 

may gain a higher relevance factor if slightly modified (nodes 



asked to move to area of interest, or to change their frequency of 

sampling, or the nature of the sampling). 

In this paper we focus on issues of relevance and authority. In 

section 3 we discuss metrics for quantifying the relevance of a SW 

to a query; in section 4 we discuss authority metrics for a SW 

relative to a query; in section 5 we discuss the experimental 

design as well as future plans to generalize these metrics to a 

composition of SWs. We summarize and conclude in section 6.  

3. RELEVANCE METRICS 
The difference between querying a specific SW and sending a 

request by searching the deep web is illustrated in Figures 1 and 

2. In the targeted scenario, the query is a “native” expression 

formulated precisely in terms of the capabilities and functionality 

of the SW in question. By contrast, in web searching, the request 

is a high level desired result that needs to be mapped to existing 

resources and capabilities and matched, then a formal expression 

is constructed. 

 

              Figure 1: Targeted querying of a specific SW 

 

 

Figure 2: Two stage process for searching and querying the 

web for SW data 

 

The examples in Figure 3 further illustrate the difference.  3.1 

Shows a formal query to a specific SW.  3.2 and 3.3 show the 

components of a high level user request to identify and search for 

a sensor web that meets certain criteria. When the most relevant 

and authoritative source is found, a query is formulated similar to 

2.B and injected in to the chosen SW. 

 

Figure 3:  Targeted querying vs. Information request, search 

and query 

 

To distinguish between a formal query custom-tailored to a SW 

and a less specific search, we call the latter a request rather than a 

query. Irrespective of its level of formality or specificity, any 

query or request can be characterized by three parameters: what, 

where, and when (also how often).  Similarly, every SW can also 

be characterized by these same parameters, what is the nature of 

the data that the network can sense (e.g. barometric pressure, dew 

point, etc. within a domain of interest such as weather conditions); 

where is the sensor network located, (e.g. latitude, longitude, 

altitude, distance below earth's surface, etc.) as well as the 

granularity of observation (e.g. number of observation per square 

meter); and when are the measurements taken. This addresses 

frequency and any other time constraints. We call these three 

parameters topicality,  coverage and timing.   

Relevance of a SW to a request is a 3 dimensional vector of 

metrics that quantifies the degree to which a SW addresses the 

topicality, coverage and timing requirements of a request or query. 

We discuss each of the three metrics in turn. 

3.1 Topicality Metric: Measuring the 

Topicality Relevance of a SW to an 

information request 
The topicality of a SW specifies the subject matter (i.e. the what 

parameter) of a domain within which the SW can make 

observations.  Given a SW and a user request for data about a 

specific topic, we want to be able to assess the degree to which the 

SW satisfies the topicality requirements of the request.  This is the 

topicality relevance of the SW to the request.  If the topic of a SW 

observation exactly matches the topic of a query term, we say that 

the SW has full topical relevance to the query and define the 

semantic distance between the two terms as 0.  Conversely, If the 

topics are completely dissimilar, we say the SW has no topical 

relevance to the query and define the semantic distance between 

as 1.  We calculate semantic distance using the semantic distance 

method described by Corby in [11] and an ontology-based topic 



description such as the Semantic Web for Earth and 

Environmental Terminology (SWEET) ontology [12].  We 

normalize the resulting semantic distances to the interval [0, 1].  

This allows us to use topical relevance (defined by semantic 

distance) as a vector element in a similarity vector that quantifies 

the overall similarity of a SW to a query.  In addition to topical 

relevance, the similarity vector will include other elements, all 

normalized to [0, 1], such as coverage relevance, timing 

relevance, authority and other parameters described in this paper. 

Corby expresses semantic distance within the framework of a 

directed graph in which nodes are ontological terms and edges are 

relations among the nodes.  He defines the semantic distance 

between two nodes as the sum of the lengths of the shortest paths 

between each of them and a common parent. He further states 

that, because, low level ontology classes are semantically closer 

than top level classes, the ontological distance between nodes 

decreases as their depth increases.  Thus, in the segment of the 

SWEET ontology shown in the tree of Figure 4, wetland and lake, 

which are brothers at depth 5, are closer than property and realm 

at depth 1.   

             

Figure 4:  Partial tree representation of the SWEET Ontology 

 

As an example, suppose R1 is a request for a measurement of the 

surface temperature of a swamp at a certain geographic location.  

For R1, there are two topical query elements; swamp and 

temperature. Suppose, further that there are three environmental 

monitoring SWs available to take water temperature observations 

at the location of interest.  Suppose, finally, that none of the three 

SWs have sensing capabilities specifically targeted to swamps.  

SW1 takes observations in wetlands, lakes and rivers, SW2 takes 

observations in lakes and rivers, while SW3 takes readings in 

bodies of water and water columns.  Although none of the three 

candidate SW exactly addresses the topic swamp, perhaps one of 

them makes observations of a class that is close enough to swamp, 

that R1 can be reasonably well satisfied.  Thus, we want to know 

which of the three candidate SWs has the highest topical 

relevance to R1. (We are only concerned about the relevance of 

the three SWs with respect to the query term swamp.  All three 

SWs are fully relevant with respect to the query term temperature, 

since they all observe temperature). 

 

Corby defines the length of link between a node t and its direct 

super type (parent) t' in an inheritance hierarchy H  by   

where   is the depth of t' in H.   He further defines the 

distance between two nodes as the minimum sum of the lengths of 

the paths between each of them and a common super type.  

Referring to Figure 4, the semantic distance, d(swamp, lake), 

between the query term swamp and the observation term lake is 

defined as follows:  

d(swamp, lake) =  d(swamp, wetland) + d(wetland, body of water) 

+ d(lake, body of water) 

   =  +   +  =      

Similarly, d(swamp, river) =  ,  d(swamp, wetland) =  , 

d(swamp, body of water) =   and d(swamp, water column) = 

 .   We say that d(swamp, swamp) = 0. 

If wetland is at the lowest depth (6) of the tree, then the distance 

from the term swamp to the farthest node in the graph ≤ .  

Normalizing all semantic distances to this maximum distance 

results in the distances as shown in Table 1.  

 

Table 1: Topical Relevance of 3 SWs to query term          

swamp of R1 

 

 

3.2 Coverage Metric: Measuring the 

Coverage Relevance of a SW to an information 

request 
The coverage of a SW specifies the geographic area over which 

the SW can make observations.  Given a SW and a user request 

for data about a specific location, we want to be able to assess the 

degree to which the SW satisfies the coverage requirements of the 

request.  This is the coverage relevance of the SW to the request. 

We use geometric overlap metrics to measure coverage relevance. 

SW ID Observation 

Term 

Normalized 

Semantic 

Distance from 

Query 

Ranking of SWs 

with respect to 

Topical 

Relevance 

SW1 

 

wetland 

river 

lake 

0.032 

0.159 

0.159 

1 

 

SW2 river 

lake 

0.159 

0.159 

3 

SW3 

 

body of water 

water column 

0.095 

0.338 

2 

 



We define coverage overlap error COE as follows.  If CR is the 

coverage required by the user request, and CA is the portion of 

CR that is actually covered by the SW, then:  

 COE = 1.0 - CA/CR  

Thus, If the geographic area sensed by a SW completely overlaps 

the area required by a user request, there is zero overlap error and 

we state that the SW has full coverage relevance to the request.  

Conversely, if the SW sensing area overlaps none of the coverage 

area of the request, the overlap error is 1, (the maximum error) 

and we say that the SW has zero coverage relevance to the query. 

For partial coverage, the error lies somewhere in the interval  [0, 

1]. 

As an example, we use the three SWs from Section 3.1 with 

coverage as shown in Table 2.  We expand the user request into 

two separate requests: R1 -  Return the temperature observed at 

the location: Latitude 42.350, Longitude -83.020,  and R2 - Return 

the temperature observed by all sensors within the area bounded 

on the upper left by Latitude 42.500, Longitude  -83.280 and 

Lower Right Latitude 42.350, Longitude -83.010.  We want to 

know the relevance of the three SWs with respect to the two user 

requests. 

 

Table 2: Coverage Boundaries for Observations of 3 SWs 

 

Based on the above definitions and data, the coverage overlap 

errors and Coverage Relevance rankings for the three SWs with 

respect to R1 and R2 are shown in Table 3. 

 

Table 3: Coverage Relevance of 3 SWs to requests R1 & R2 

 

 

3.3 Timing Metric: Measuring the Timing 

Relevance of a SW to an information request 
The timing of a SW specifies the time or time period over which 

the SN can make observations and/or the frequency with which 

observations can be made.  Given a SW and a user request for 

data about a specific time period, we want to be able to assess the 

degree to which the SW satisfies the timing requirements of the 

request.  This is the timing relevance of the SW to the request. For 

real time queries, start times must be ≥ current time, and end times 

must be ≤ current time + anticipated remaining SW lifetime.  For 

queries of archived data, start and end times are limited by 

historical date range of the data set.  

We define the timing relevance metric in a manner similar to the 

coverage metric.  If TR is the sensing time range required by the 

User Request, and TA is the portion of TR during which 

observations are actually made by the SW, then timing range 

overlap error, TOER is defined as:  

 TOER = 1.0 - TA/TR 

We define the frequency relevance metric as follows.  If FR is the 

observation frequency required by the user request, and if FA is 

the observation frequency of the SW, then the timing frequency 

overlap error is: 

 TOEF  = 1.0 - FA/FR 

Continuing with the example from the previous section, suppose 

SW1, SW2, and SW3 can make observations in accordance with 

the timing parameters presented in Table 4.  Suppose, further that 

we have the following extension of user request, R1:  Return 

temperature observations every 10 minutes beginning at CT + 

1000 hrs.  and ending at CT + 2000 hrs. (where CT  = current 

time). 

 

Table 4: Timing Parameters for Observations of 3 SWs 

 

Based on the above definitions and data, the Timing Overlap error 

and Frequency Overlap error and Timing Relevance rankings for 

R are shown in Table 5. 

 

Table 5: Timing and Frequency Relevance of 3 SWs to      

request R1 

SW 

ID 

R1 

Timing 

Overlap 

Error 

SW Rank 

with 

respect to  

R1 Timing 

R1 

Frequency 

Overlap 

Error 

SW Rank 

with respect 

to R1 

Frequency 

SW1 1.0 2 0.0 1 

SW2 0.0 1 0.33 2 

SW3 0.0 1 0.50 3 

 

 

SW 

ID 

R1 

Coverage 

Overlap 

Error 

SW Rank 

with respect 

to  R1 

coverage  

R2 

Coverage 

Overlap 

Error 

SW Rank 

with respect 

to R2 

coverage  

SW1 1.0 2 0.0740 1 

SW2 0.0 1 0.9136 3 

SW3 1,0 2 0.8148 2 

SW 

ID 

 

ID 

ID 

Upper Left 

Lat 

Upper left 

Lon 

Lower 

Right Lat 

Lower right 

Lon 

SW1 42.531 -82.283 42.346 -83.030 

SW2 42.400 -83-080 42.341 -83.020 

SW3 42.475 -83.090 42.340 -83.030 

SW ID Observations per 

hour 

Estimated Remaining 

Sensor Life (hrs) 

SW1 60 500 

SW2 12 3000 

SW3 2 5000 



3.4 Potential and Composition Relevance 
As earlier noted, a SW may not have a high relevance factor as is, 

but may improve its relevance if modified. This could involve the 

tasking of nodes to move closer to an area of interest in order to 

improve coverage relevance. It might involve tasking of nodes to 

change their frequency of observation to improve timing 

relevance, or it could involve tasking of nodes to sense different 

phenomena that have shorter semantic distances to query terms in 

order to improve topical relevance. The potential of a SW to 

improve its relevance will be determined by examining the SW's 

capabilities metadata to determine how the SW's configuration or 

behavior can be modified to improve its relevance to an 

information request. 

It is also possible that SWs could be combined so that the union 

of their nodes would provide more complete coverage and thus a 

higher coverage relevance than any of the component SWs.  

Possible relevance improvements would also be determined by 

examining SW metadata to assess composition options.  The 

initial phase of this research will focus upon development of the 

relevance metrics defined in sections 3.1, 3.2 and 3.3.  After some 

experience is gained in these areas, the research will be expanded 

to address potential and composition relevance. 

4. AUTHORITY METRICS 
Since SWs are not generally part of the surface web (i.e. SW data 

is not stored on web pages) the authority of a SW cannot be 

established by enumerating the number of links to other SW web 

pages of known authority.  However, the sponsoring authority (the 

entity responsible for the creation and maintenance of the SW 

resource) is usually accessible on the surface web.   In this 

project, we analyze the links to the sponsor to determine its 

authority with respect to the topic of an information request. We 

then assign that same authority to the SW resource (for that 

specific search topic).  To determine the authority of the surface 

web accessible sponsoring authority, we use topic-sensitive 

PageRank, a mechanism that creates a bias rating for the most 

useful, accurate and authoritative sensor webs that relate to a set 

of representative topics. This is similar to the approach suggested 

by Taher Haveliwala in his extensive research on topic-sensitive 

PageRank [13] and is an extension of earlier research by 

Chakrabarti et al. [14] who demonstrated that web pages tend to 

point to other pages that relate to the same general topic. The 

topics in our case relate to sensor networks and sensor webs, and 

use an ontology that consists of knowledge, words, their meanings 

and their conceptual relationships to the most authoritative SW 

pages.   

During an offline processing of the web crawl, we generate 

several topic-sensitive PageRank vectors; each biased using URLs 

from a top-level category of the Open Directory Project (ODP) 

[15].  At query time, the similarity of the query (and, if available, 

the query or user context) to each of these topics is calculated.  

Let Tj be the set of URLs in the ODP category . We then define 

the topic vector  =  where:  

 

 

The PageRank vector for topic  will be (α, )  where the 

bias factor, α affects the degree to which the resultant PageRank 

vector is biased towards the topic vector .. 

The second step in the approach is performed at query time. Given 

a query q, let q’ be the context of q.  If the query was issued by 

highlighting the term q in some Web page u, then q’ consists of 

the terms in u. For queries not done in context, let q=q’. Using a 

unigram language model, with parameters set to their maximum-

likelihood estimates, we next compute the class probabilities for 

each of the 16 top level ODP classes, based on . Let be the 

ith term in the query (or query context) q’. Then given the query 

q, for each  we compute the following probability: 

                                    

      

A text index is then used to retrieve URLs for all documents 

containing the original query terms q. Next, we compute the 

query-sensitive importance score of each retrieved URL as 

follows. Let  be the rank of document d identified by the 

rank vector (α, ) (i.e., the rank vector for topic ). For 

the Web document d, the query-sensitive importance score  is 

defined as: 

              

 values will be normalized to the interval [0, 1] with a value 

of 1 indicating the maximum importance. Query results are ranked 

according to composite score . Following this approach will 

help avoid the problem of heavily linked pages receiving a high 

ranking for queries for which they have no particular topicality 

relevance or authority.  This follows because pages considered 

important in some subject domains may not be considered 

important in others, regardless of what keywords may appear 

either in the page or in anchor text referring to the page.  

5. PLANNED RESEARCH ACTIVITIES 
In order to develop and refine the relevance and authority 

concepts presented in sections 3 and 4, a search model will be 

implemented that ranks a group of SWs with respect to a 

predefined set of information requests.  We will identify the test 

set of deployed Sensor Networks by using SOS (Sensor 

Observation Service) resources such as National Oceanographic 

and Atmospheric Administration  http://sdf.ndbc.noaa.gov/sos.  

We will then formulate a set of test queries that incorporate a 

variety of topical, coverage and timing criteria that might be 

satisfied by the test set of SWs. 

A 4-dimension evaluation vector will be constructed for each of 

the candidate SWs with respect to each of the information 

requests.  Elements 1-3 will consist of the 3-dimension relevance 

vector defined in section 3 (low values for the three vector 

components indicate high relevance).  Element 4 will consist of  

the single dimension authority vector described in section 4 (high 

http://sdf.ndbc.noaa.gov/sos


value indicates high authority). For a given information request, 

the SW best able to satisfy the request has the lowest values in 

elements 1-3 and the highest value in element 4. A suitable 

scoring formula will be created to assign weights to evaluation 

vector components and calculate an overall SW ranking from 

these components.  This task is probably best performed after   

initial gathering and examination of evaluation vector data. 

Once a preliminary scoring formula is devised, a panel of test 

users will assess and evaluate the rankings of the SW resources 

returned by the model with respect to the various information 

requests.  Model parameters, weights and the scoring 

methodology will be optimized based on feedback from the panel.  

In a future research phase, the issues of potential and composition 

relevance will be addressed and the evaluation vector will be 

expanded with an additional two elements to address these 

factors. 

6. CONCLUSION 
In this paper, we have compared and contrasted some of the key 

attributes of the surface web and the deep web, particularly as 

relates to obtaining data from wireless sensor networks and sensor 

webs.  We have defined a three-dimension vector that provides 

metrics for quantifying the relevance of a sensor web to a specific 

query or request for data.  We also defined an authority 

mechanism that does not just measure the overall popularity of a 

resource, but rather the interest in that resource with respect to a 

particular topic.  For future research, we will be expanding the 

evaluation vector from four to six elements to incorporate 

potential and composition relevance.  Ultimately, we will 

incorporate the above metrics into search engine dedicated to 

discovering and ranking of SW data resources. 
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